First results of a head-to-head trial of pegunigalsidase alfa vs agalsidase beta in Fabry disease: 2-year results of the phase 3 randomized, double-blind, BALANCE study

Eric L. Wallace

The University of Alabama at Birmingham, Birmingham, AL, USA

Background

- Chronic kidney disease is a main consequence of Fabry disease (FD) and is one of the leading causes of death in male patients with FD¹
- Current therapeutic approaches for FD include reduction of accumulated glycosphingolipids to stabilize renal function using enzyme replacement therapy (ERT) or chaperone therapy (ie, migalastat)^{2,3}
- Unmet needs include progressive clinical decline with decreasing renal function and immunogenicity with ERT^{2,3}

Pegunigalsidase alfa is a novel PEGylated recombinant α-galactosidase A ERT in development to treat FD

- Pegunigalsidase alfa is designed to offer enhanced bioavailability, prolonged half-life, reduced incidence of ADAs, and potentially improved tolerability compared with available ERTs¹
- The molecule is a covalently linked homodimer composed of:
 - 2 plant cell-derived subunits of α-galactosidase A linked through the ~2 kDa PEG cross-linker, resulting in a 114 kDa enzyme

BALANCE study rationale

Pegunigalsidase alfa cleared Gb3 depositions in kidney peritubular capillaries after 6 months in ERT-naïve adults^{1,2}

 BRIDGE³ (phase 3, open-label, single arm, switch-over from 0.2 mg/kg agalsidase alfa E2W) demonstrated safety and efficacy over 12 months of pegunigalsidase alfa (1.0 mg/kg E2W) treatment

Image is used with permission from Schiffman et al. *JIMD*. 2019;42:534–544 under the Creative Commons Attribution License.

¹Schiffmann R et al. J Inherit Metab Dis. 2019;42(3):534–544; ²Patients were naïve to ERT or had not received ERT in the previous 6 months; dosing groups were combined (0.2, 1, and 2 mg/kg E2W); ³NCT03018730. BL, baseline; BLISS, Barisoni Lipid Inclusion Scoring System; E2W, every 2 weeks; FD, Fabry disease; Gb3, globotriaosylceramide; mo, months; SD, standard deviation.

BALANCE study objective

BALANCE (NCT02795676) was a phase 3 noninferiority study that evaluated the efficacy and safety of pegunigalsidase alfa (1.0 mg/kg E2W) compared with agalsidase beta (1.0 mg/kg E2W) in patients with FD previously treated with agalsidase beta who also had deteriorating renal function

BALANCE study design

- Symptomatic **adults with FD** (18–60 years)
- Linear eGFR^b slope more negative than or equal to −2 mL/min/1.73 m²/y
- Treatment with agalsidase beta (1.0 mg/kg E2W) for ≥1 year and ≥80% compliance over the last 6 months

Main exclusion criteria

- Screening eGFR^b 91–120 mL/min/1.73 m² and historical eGFR >120 mL/min/1.73 m² during 9–18 months before screening
- UPCR >0.5 g/g and not treated with an ACEi or ARB

^a1 Patient withdrew consent prior to the first dose. ^bThe chronic kidney disease epidemiology collaboration (CKD-EPI) 2009 equation (Levey AS et al. Ann Intern Med. 2009;150:604–612) was used to calculate eGFR based on serum creatinine measured at each visit.

ACEi, angiotensin-converting enzyme inhibitors; ARB, angiotensin II receptor block; E2W, every 2 weeks; eGFR, estimated glomerular filtration rate; ITT, intent-to-treat; PP, per protocol; UPCR, urinary protein-to-creatinine ratio.

Main efficacy endpoints

- Primary efficacy endpoint: noninferiority of pegunigalsidase alfa to agalsidase beta with respect to annualized change (slope) in eGFR_{CKD-EPI} (biomarker for progressive kidney decline) at 24 months
- Secondary endpoints included change from baseline at all time points in plasma lyso-Gb3 levels

Main safety, tolerability, and immunogenicity endpoints

- Treatment-emergent adverse events (TEAEs) including:
 - Infusion-related reactions (IRRs)
 - Treatment-related TEAEs
- Use of pre-infusion medication
- Immunogenicity (antidrug antibodies)

Baseline patient characteristics and demographics

	Pegunigalsidase alfa (n = 52)	Agalsidase beta (n = 25)	<i>p</i> -value
Age, years Mean ± SE	43.9 ± 1.4	45.2 ± 1.9	0.60ª
Sex, n (%)	00 (50)	40 (70)	
Female	29 (56) 23 (44)	18 (72) 7 (28)	0.19 ^b
UPCR, n (%) UPCR ≤ 0.5 g/g 0.5 < UPCR < 1 g/g UPCR ≥ 1 g/g	36 (69) 9 (17) 7 (14)	20 (80) 2 (8) 3 (12)	0.52 ^b
eGFR, mL/min/1.73 m ² Mean ± SE Median (min, max)	73.5 ± 2.8 73.5 (30.2, 125.9)	74.2 ± 4.2 74.9 (34.1, 107.6)	0.82 ^c
eGFR slope, mL/min/1.73 m²/y ^d Mean ± SE Median (min, max)	-8.0 ± 0.9 -6.7 (-30.5, 6.3)	-8.3 ± 0.9 -7.8 (-20.3, -2.8)	0.37°
ADA status ^e Positive Negative	18 (34.6) 34 (65.4)	8 (32.0) 17 (68.0)	0.82 ^b
Plasma lyso-Gb3, nM Mean ± SE Median (min, max)	26.2 ± 3.8 15.2 (0.8, 143.9)	32.1 ± 7.1 17.6 (2.1, 142.0)	0.58°
Previous agalsidase beta exposure, mo Mean ± SE Min, max	65.0 ± 6.7 12.6, 236.9	77.3 ± 8.3 27.6, 168.3	0.25ª

• Mean duration of previous agalsidase beta exposure: ~6 years (range: 1–20 years)

^aT-test; ^bPearson chi-squared; ^cWilcoxon; ^deGFR slope at baseline was based on historical, screening, and baseline serum creatinine and was more positive than -2 mL/min/1.73 m²/y for some patients. ^eAt screening, each sample was tested for reactivity to both drugs, but due to the high cross-reactivity, only data for the assigned drug are presented.

ADA, antidrug antibody; eGFR, estimated glomerular filtration rate; max, maximum; min, minimum; mo, months; nM, nanomolar (nmol/L); SE, standard error; UPCR, urine protein creatinine ratio.

Overlap between arms: eGFR over time, median slopes and its CI limits – noninferiority was met

 The analysis was repeated, adjusting the model for gender, and the conclusions remained unchanged

^aTo determine noninferiority, the annualized median eGFR slopes were analyzed by quantile regression using SAS PROC QUANTREG to obtain the corresponding 95% CI; noninferiority was declared if the lower bound of the CI for the treatment difference (pegunigalsidase alfa – agalsidase beta) was \geq -3.0 mL/min/1.73 m²/year; ^b(Pegunigalsidase alfa) – (agalsidase beta); ^cValue above the predefined noninferiority margin. CI, confidence interval; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; eGFR_{CKD-EPI}, eGFR chronic kidney disease epidemiology collaboration equation.

Plasma lyso-Gb3 was stable and overlapped between arms

Plasma lyso-Gb3 concentration over time

 High overlap of plasma lyso-Gb3 levels between both arms

 Plasma lyso-Gb3 median change from baseline was stable with pegunigalsidase alfa (1.15 nM) and agalsidase beta (-1.50 nM)

Box and whiskers represent the median and quartiles, with outliers as diamonds and squares for pegunigalsidase alfa and agalsidase beta, respectively; 'X' represents the mean. Lyso-Gb3, globotriaosylsphingosine; nM, nanomolar (nmol/L).

Safety measures: rate of treatment-emergent AEs

- The exposure-adjusted rate of related TEAEs was ~4-fold higher for agalsidase beta than pegunigalsidase alfa
- 1 patient receiving pegunigalsidase alfa withdrew due to a serious, related TEAE of hypersensitivity (this patient was IgE positive at baseline)
- 5 patients on pegunigalsidase alfa discontinued: 1 withdrew before first infusion, 4 withdrew throughout the study
- 1 patient on agalsidase beta discontinued
- No deaths were registered during the study

	Pegunigalsidase alfa (n = 52)	Agalsidase beta (n = 25)
Any TEAE Events, n (rate) Patients, n (%)	561 (572) 47 (90)	406 (817) 24 (96)
TEAE related to drug Events, n (rate) Patients, n (%)	42 (43) 21 (40)	76 (153) 11 (44)
Serious TEAE related to drug Events, n (rate) Patients, n (%)	1 (1) 1 (2)	0 (0) 0 (0)
Related TEAE leading to withdrawal Events, n (rate) Patients, n (%)	1 (1) 1 (2)	0 (0) 0 (0)

Rate of infusion-related reactions (IRRs)

- The number and rate of IRR events was higher for agalsidase beta than pegunigalsidase alfa by ~4-fold and ~8-fold, respectively
- Most IRRs were mild or moderate in severity
- As planned, there was a notable drop in the use of premedications at 24 months in both treatment arms

	Pegunigalsidase alfa (n = 52)	Agalsidase beta (n = 25)
Overall IRR Events, n (rate) Patients, n (%)	13 (0.5) 11 (21.2)	51 (3.9) 6 (24.0)
Wild or moderate IRR Events, n (rate) Patients, n (%)	12 (0.5) 11 (21.2)	51 (3.9) 6 (24.0)
Severe IRR Events, n (rate) Patients, n (%)	1 (0) 1 (1.9)	0 (0) 0 (0)

Antidrug antibodies by treatment arm

• Pegunigalsidase alfa:

- Reduction in ADA+ patients from 35% (18/52) to 23% (11/47)
- Reduction in nAb+ patients from 33% (17/52) to 15% (7/48)

• Agalsidase beta:

- Reduction in ADA+ patients from 32% (8/25) to 26% (6/23)
- No change in nAb+ patients from 28% (7/25) to 25% (6/24)
- Treatment-emergent ADA+ rate was lower with pegunigalsidase alfa (6/52, 12%) than agalsidase beta (5/25, 20%)
 - Note that patients in the agalsidase beta arm had approximately 6 years of previous treatment

	Pegunigalsidase alfa	Agalsidase beta
Treatment-emergent ADAs, n (%)	n = 52	n = 25
Yes	6 (12)	5 (20)
Titer boosted ^{a,b}	3 (50)	2 (40)
De novo ^{a,c}	3 (50)	3 (60)
No	46 (89)	20 (80)

^a% calculated out of patients with treatment-emergent ADAs; ^bTiter at least 4-fold baseline values; ^cIf the patient was ADA- at baseline and became ADA+ at any subsequent time; ^d% of nAb+ calculated out of total patients in respective treatment arm.

ADA, antidrug antibody; ADA-, negative for antidrug antibodies; ADA+, positive for antidrug antibodies; nAb+, positive for neutralizing antibodies.

- Pegunigalsidase alfa showed noninferior efficacy to agalsidase beta based on median eGFR annualized slope, a key measure of FD progression
- Overall, patients who switched to pegunigalsidase alfa showed favorable tolerability and immunogenicity profiles
- Most patients who completed the study from both arms (97%: 45/47 on pegunigalsidase alfa and 24/24 on agalsidase beta) opted to continue or initiate treatment with 1 mg/kg E2W pegunigalsidase alfa in an open-label extension study for 60 months (NCT03566017)

Acknowledgements

- The author would like to acknowledge and thank the investigators involved in this study and Dr. Anat Sakov for her assistance in the statistical analysis.
- The trial was sponsored by Protalix Biotherapeutics and funding provided from Chiesi USA, Inc.

Authors

Eric L. Wallace¹, Ozlem Goker-Alpan², William R. Wilcox³, Myrl Holida⁴, John Bernat⁴, Nicola Longo⁵, Derralynn Hughes⁶, Pilar Giraldo⁷, Maria Judit Molnar⁸, Damara Ortiz⁹, Robert J. Hopkin¹⁰, Camilla Tøndel¹¹, Aleš Linhart¹², Patrick Deegan¹³, Ana Jovanovic¹⁴, Michael Muriello¹⁵, Bruce A. Barshop¹⁶, Virginia Kimonis¹⁷, Bojan Vujkovac¹⁸, Albina Nowak¹⁹, Tarekegn Geberhiwot²⁰, Antonio Pisani²¹, Dominique P. Germain²², Ilkka Kantola²³, Jasmine Knoll²⁴, Ankit Mehta²⁵, Stephen Waldek²⁶, Einat Almon²⁷, Sari Alon²⁷, Raul Chertkoff²⁷, Rossana Rocco²⁸, David G. Warnock¹

¹The University of Alabama at Birmingham, Birmingham, AL, USA; ²Lysosomal and Rare Disorders Research and Treatment Center, Inc., Fairfax, VA, USA; ³Department of Human Genetics, Emory University, Atlanta, GA, USA; ⁴University of Iowa Hospitals and Clinics, Iowa City, IA, USA; ⁵University of Utah, Center for Clinical Translational Sciences, Salt Lake City, UT, USA; ⁶Lysosomal Storage Disorders Unit, Royal Free London NHS Foundation Trust and University College London, London, UK; ⁷Quirónsalud Hospital, Zaragoza, Spain; ⁸Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, HUN; ⁹UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; ¹⁰Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; ¹¹University of Bergen, Department of Clinical Science, Bergen, NOR; ¹²Vseobecna fakultni nemocnice v Praze, Praha, CZE; ¹³Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; ¹⁴Mark Holland Metabolic Unit, Northern Care Alliance NHS Foundation Trust, Greater Manchester, UK; ¹⁵Department of Pediatrics – Genetics Curative Network Building, Milwaukee, WI, USA; ¹⁶University of California San Diego, La Jolla, CA, USA; ¹⁷University of California, Irvine Institute for Clinical and Translational Science, CA, USA; ¹⁸Slovenj Gradec General Hospital, Slovenj Gradec, SI; ¹⁹University Hospital of Psychiatry Zürich, Department of Internal Medicine, CHE; ²⁰Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, West Midlands, UK; ²¹Azienda Ospedaliera Universitaria "Federico II", Dipartimento di Sanita Pubblica, Napoli, ITA; ²²Division of Medical Genetics, University Medical Center, Dallas, TX, USA; ²⁶University of Sunderland, Sunderland, UK; ²⁷Protalix Biotherapeutics, Carmiel, ISL; ²⁸Chiesi Farmaceutici S, p.A., Parma, ITA.